Math II Exam Review
Variation A-CED.1

Direct Variation – A function that can be written in the form $y = kx$, where k is the constant of variation.

Inverse Variation – A function that can be written in the form $y = \frac{k}{x}$, where k is the constant of variation.

Joint Variation – A function that combines direct and inverse variations

For example:
y varies directly with the square of x
$y = kx^2$

y varies inversely with the cube of x
$y = \frac{k}{x^3}$

z varies jointly with x and y
$z = kxy$

z varies jointly with x and y and inversely with w
$z = \frac{kxy}{w}$

1. Suppose that y varies inversely with the square of x, and $y = 50$ when $x = 4$. Find y when $x = 5$.

\[
\begin{align*}
 y &= \frac{50}{x^2} \\
 50 &= \frac{k}{4^2} \\
 16 &= \frac{k}{50} \\
 k &= 800
\end{align*}
\]

2. Suppose that y varies directly with x and inversely with z^2, and $x = 48$ when $y = 8$ and $z = 3$. Find x when $y = 12$ and $z = 2$.

\[
\begin{align*}
 y &= \frac{kx}{z^2} \\
 8 &= \frac{k(48)}{3^2} \\
 48 &= \frac{48k}{9} \\
 72 &= 48k \\
 k &= 1.5
\end{align*}
\]

\[
\begin{align*}
 y &= \frac{1.5x}{z^2} \\
 12 &= \frac{1.5x}{2^2} \\
 48 &= 1.5x \\
 x &= 32
\end{align*}
\]
3. A salesperson’s commission varies directly with sales. For $1000 in sales, the commission is $85.

 \[\text{commission} = K \cdot \text{Sales} \]

 \[\frac{85}{1000} = k \frac{1000}{1000} \]

 \[k = 0.085 \]

 \[c = 0.085(2300) \]

 \[c = 195.50 \]

4. The number of rotations of a bicycle wheel varies directly with the number of pedal strokes. Suppose that in the bicycle’s lowest gear, 6 pedal strokes move the cyclist about 357 inches. In the same gear, how many pedal strokes are needed to move 100 feet?

 \[n = K \cdot p \]

 \[\frac{357}{6} = 59.5 \]

 \[K = 59.5 \]

 \[p = 20.16 \]

 So about 20 strokes

5. If \(y \) varies directly with \(x \) and \(y \) is 18 when \(x \) is 6, which of the following represents the situation?

 A. \(y = 24x \)
 B. \(y = 3x \)
 C. \(y = 12x \)
 D. \(y = \frac{1}{3}x \)

 \[y = Kx \]

 \[18 = K(6) \]

 \[K = 3 \]

6. The number of bags of grass seed \(n \) needed to reseed a yard varies directly with the area \(a \) to be seeded and inversely with the weight \(w \) of a bag of seed. If it takes two 3-lb bags to seed an area of 3600 ft², how many 3-lb bags will seed 9000 ft²?

 A. 3 bags
 B. 4 bags
 C. 5 bags
 D. 6 bags

 \[n = \frac{a}{w} \]

 \[n = \frac{a}{600w} \]

 \[n = \frac{900}{600} \]

 \[n = 1.5 \]

7. The volume, \(V \), of a certain gas varies inversely with the amount of pressure, \(P \), placed on it. The volume of this gas is 175 cm³ when 3.2 kg/cm² of pressure is placed on it. What amount of pressure must be placed on 400 cm³ of this gas?

 A. 1.31 kg/cm²
 B. 1.40 kg/cm²
 C. 2.86 kg/cm²
 D. 7.31 kg/cm²

 \[V = \frac{K}{P} \]

 \[175 = \frac{K}{3.2} \]

 \[400 = \frac{560}{P} \]

 \[K = 560 \]

 \[100P = 560 \]

 \[P = 5.6 \]
8. The amount of time it takes to build a road varies inversely with the number of workers building the road. Suppose it takes 50 workers 8 months to build the road.

 A. What is the constant of variation?

 \[\frac{T}{w} = \frac{k}{50} \quad k = 400 \]

 B. Write an equation that could be used to determine how long it would take \(n \) workers to build the road. (Be sure to define the variables.)

 \[\text{Time} = \frac{400}{\text{workers}} \quad T = \frac{400}{n} \quad T = \text{time} \quad n = \text{workers} \]

 C. How much faster would 60 workers build the road than 50 workers?

 \[T = \frac{400}{60} \quad T = \frac{400}{50} \]

 \[T = 6.7 \quad T = 8 \]

 It would take 1.3 less months to finish.

9. The time, \(t \), in hours that it takes \(x \) people to plant \(n \) trees varies directly with the number of trees, and inversely with the number of people. Suppose 6 people can plant 12 trees in 3 hours. How many people are needed to plant 28 trees in 5 hours and 15 minutes?

 A. 6 B. 7 C. 8 D. 9

 \[T = \frac{K_1}{X} \quad T = \frac{1.5n}{x} \]

 \[\frac{3}{6} = K \quad \frac{5.25}{x} = 1.5 \quad 5.25 \times x = 42 \]

 \[x = 8 \]

10. The force, \(F \), acting on a charged object varies inversely to the square of its distance, \(r \), from another charged object. When the two objects are 0.64 meter apart, the force acting on them is 8.2 Newtons. \textit{Approximately} how much force would the object feel if it is at a distance of 0.77 meter from the other object?

 A. 1.7 Newtons
 B. 5.7 Newtons
 C. 11.9 Newtons
 D. 12.9 Newtons